FISEVIER

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

journal homepage: www.elsevier.com/locate/bbagen

Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles

Gianni Ciofani ^{a,*}, Giada Graziana Genchi ^{a,b}, Barbara Mazzolai ^a, Virgilio Mattoli ^a

- ^a Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- ^b Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy

ARTICLE INFO

Article history:
Received 12 August 2013
Received in revised form 23 September 2013
Accepted 7 October 2013
Available online 15 October 2013

Keywords: PC12 cells Cerium oxide nanoparticles Oxidative stress Anti-oxidant defenses Neuroprotection

ABSTRACT

Background: Thanks to their impressive catalytic properties, cerium oxide nanoparticles (nanoceria) are able to mimic the activity of superoxide dismutase and of catalase, therefore acting as reactive oxygen species (ROS) scavengers in many biological contexts, for instance offering neuroprotection and reduction of apoptosis rate in many types of cells exposed to oxidative stress (stem cells, endothelial cells, epithelial cells, osteoblasts, etc.). Methods: We report on the investigation at gene level, through quantitative real time RT-PCR, of the effects of cerium oxide nanoparticles on ROS mechanisms in neuron-like PC12 cells. After three days of treatment, transcription of 84 genes involved in antioxidant defense, in ROS metabolism, and coding oxygen transporters is evaluated, and its relevance to central nervous system degenerative diseases is considered.

Results: Experimental evidences reveal intriguing differences in transcriptional profiles of cells treated with cerium oxide nanoparticles with respect to the controls: nanoceria acts as strong exogenous ROS scavenger, modulating transcription of genes involved in natural cell defenses, down-regulating genes involved in inflammatory processes, and up-regulating some genes involved in neuroprotection.

Conclusions: Our findings are extremely promising for future biomedical applications of cerium oxide nanoparticles, further supporting their possible exploitation in the treatment of neurodegenerative diseases.

General significance: This work represents the first documented step to the comprehension of mechanisms underlying the anti-oxidant action of cerium oxide nanoparticles. Our findings allow for a better comprehension of the phenomena of ROS scavenging and neuroprotection at a gene level, suggesting future therapeutic approaches even at a pre-clinical level.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cerium oxide nanoparticles (nanoceria, NC) are an oxide of the rare earth metal cerium (CeO_2) that, thanks to their surface oxygen vacancies changing the local electronic and valence arrangement, are able to mimic the activity of superoxide dismutase and of catalase, therefore acting as reactive oxygen species (ROS) scavengers in many biological contexts [1,2]. These vacancies compensate the fraction of Ce in the Ce^{3+} form, implying the coexistence of Ce^{3+} and Ce^{4+} ions that are involved in the redox reactions [3]. Recently, NC has been found to act also as scavenger of nitric oxide radical, highlighting further important implications in biological contexts [4].

All these phenomena are enhanced at the nanoscale level because of the higher surface/volume ratio of the nanoparticles, and have already found many possible exploitations in biomedicine, including endothelial

E-mail address: gianni.ciofani@iit.it (G. Ciofani).

cell protection [5], wound healing [6], anti-cancer applications [7–9], neuroprotection [10,11], and neuronal regeneration [12].

However, the interest towards bio-applications of NC is rapidly growing [13,14], and many other examples of possible exploitation can be found in the literature. It has been shown, for example, as NC positively affects angiogenesis by modulating the intracellular oxygen environment [15], and how it exerts therapeutic effects on retinal pathologies [16–18], protecting the retina through a decrease of ROS levels [19]. Moreover, radio-protective effects of cerium oxide nanoparticles have been efficiently demonstrated [20,21].

Concerning potential neurological applications, we recently investigated NC interactions with PC12 cell line that represents a valuable model for many features of central dopaminergic neurons. We confirmed NC anti-oxidant properties on these cells, and, most interestingly, we highlighted both an increment of differentiation in terms of neurite length, and a strong increment of dopamine secretion following NC treatment under proliferative conditions [22].

While the achieved results are very encouraging as far as NC use for central nervous system treatment is concerned, the mechanisms underpinning these effects are still largely unknown. In this work, we

^{*} Corresponding author. Tel.: $+39\,050883019$, $+39\,050883027$ (Lab); fax: $+39\,050883497$.

assessed the nanoparticle internalization by PC12 cells through confocal microscopy, and we performed a detailed analysis at gene level of the effects of NC administration, through quantitative real-time RT-PCR. In particular, we focused on oxidative stress and antioxidant defense, in order to depict a clearer picture of the interactions between NC and cells.

Results showed that, out of 84 investigated genes, 16 were affected by NC treatment, denoting an alteration of the natural anti-oxidant defenses of the cells and some interesting compensation mechanisms due to the presence of exogenous ROS scavengers.

2. Materials and methods

2.1. Cell culture and treatment with nanoceria

Cerium oxide nanoparticles were purchased from Sigma (code 544841) and were extensively characterized in a previous work [22]. Nanoparticles were dispersed through a mild sonication in physiologic saline solution (0.9% NaCl in H_2O) at a concentration of 10 mg/ml, and then diluted in cell culture medium at desired concentrations. The obtained dispersions were characterized with scanning electron microscopy through a Dual-Beam system (FEI Helios 600), by dropping a small quantity of diluted dispersion on a silicon wafer, gold-sputtered before observation. UV/Vis spectrum of NC dispersion was performed in the range of $200-1000 \, \text{nm}$ (Lambda $45 \, \text{Spectrophotometer}$, PerkinElmer).

Derived from a rat pheochromocytoma, PC12 cells (ATCC CRL-1721) represent a valuable model for neuronal differentiation, also mimicking many features of central dopaminergic neurons, dopamine production included [23]. PC12 cells were cultured in Dulbecco's modified Eagle medium (DMEM) with 10% horse serum (HS), 5% fetal bovine serum (FBS), 100 IU/ml penicillin, 100 μ g/ml streptomycin and 2 mM μ -glutamine.

PC12 cells were cultured at a density of $10,000 \text{ cells/cm}^2$ in 24-well plates, and treated for 72 h with 0, 20 and $50 \,\mu\text{g/ml}$ of NC.

2.2. Nanoceria internalization assessment

In order to verify NC internalization by PC12 cells, nanoparticles were labeled with a fluorescent dye (Oregon Green 488, from Invitrogen). The chemical modification of NC was achieved adapting procedures previously described in the literature [24]. Nanoparticles were dispersed in a HNO₃ solution (65% w/w), achieving a final concentration of 10 mg/ml, and sonicated for 3 h with a Bransonic sonicator 2510, using an output power of 20 W. This step aimed at introducing -OH groups on nanoparticle surface through a strong oxidation process. Thereafter, nanoparticles were rinsed three times in absolute ethanol (through centrifugations at 30,000 g for 10 min each), re-dispersed at a concentration of 10 mg/ml in a solution of 3aminopropyl-triethoxysilane (APTES, 50% in ethanol, 440140 from Sigma), and stirred at 60 °C for 12 h. Following this procedure, amino groups were exposed on the nanoparticle surface, and further modifications were allowed. Amino-functionalized NC was finally washed three times with deionized water by ultracentrifugation, freeze-dried overnight and stored at -20 °C for further reactions or characterization. Efficacy of the APTES functionalization was verified through attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. Analyses were performed with a Shimadzu IRAffinity-1 spectrophotometer (4 cm⁻¹ resolution in the range of 4000–400 cm⁻¹), and results are reported in the Supplementary material.

The obtained amino-functionalized nanoparticles were dispersed $(10\,\text{mg/ml})$ in 1 ml of a 0.1 M borate buffer, pH 8.2, and $100\,\mu$ l of Oregon Green 488 $(10\,\text{mg/ml})$ in DMSO) was added drop by drop while stirring. After 6 h of stirring at room temperature, Oregon Green 488-conjugated NC was washed in buffer by several ultracentrifugation steps to eliminate non-reacted dye. The procedure was repeated until no fluorescence was

detectable in the supernatant. The efficiency of reaction was evaluated by measuring dye concentration in the supernatants with a microplate reader (Victor3, PerkinElmer; excitation wavelength 485 nm, emission wavelength 535 nm) and, by difference, calculating the amount of dye bound to the nanoparticles. After the final step, fluorescent NC was freeze-dried overnight. Efficiency of the procedure was assessed to be around 60%.

Fluorescent NC was incubated with PC12 cells for 72 h at a concentration of 20 μ g/ml. Thereafter, cells were fixed using a 4% paraformaldehyde solution in PBS and stained with TRITC-phalloidin and DAPI through standard procedures in order to label, respectively, f-actin (in red) and nuclei (in blue). Samples were observed with a Nikon Inverted Microscope TiE, equipped with a Nikon Confocal Laser System C2s (software for image analysis is NIS Elements).

2.3. Quantitative RT-PCR

Transcription of specific genes was evaluated with quantitative real-time qRT-PCR after three days of incubation with 0, 20, and 50 $\mu g/ml$ of NC.

Total RNA was isolated from cell cultures using High Pure RNA Isolation kit (Roche) according to the manufacturer's protocol. Extracted RNA was diluted ten times in pure water (MilliQ Millipore) and RNA concentration was measured at 260 nm with a spectrophotometer (Lambda 45, PerkinElmer). RNA retrotranscription into cDNA was performed with 400 ng of RNA in a total volume of 20 μ l, including 4 μ l of iScriptTM Reverse Transcription Supermix (5×, Bio-Rad). The synthesis program included an initial incubation at 25 °C for 5 min, followed by incubation at 42 °C for 45 min and at 48 °C for 15 min. Reaction was inactivated by heating at 85 °C for 5 min, and the reaction volume was finally increased up to 200 μ l with pure water.

cDNA was analyzed with the Rat Oxidative Stress RT² Profiler™ PCR Array (PARN-065ZD-2 from Qiagen), that profiles the expression of 84 genes related to oxidative stress, to reactive oxygen species (ROS) metabolism, involved in superoxide metabolism, and to relevant oxygen transporter genes. Quantitative RT-PCR was performed with a RT² SYBR Green PCR Master Mix (330500 from Qiagen) in a CFX Connect™ Real-Time PCR Detection System (Bio-Rad) to determine the transcription of different genes. The thermal protocol was applied with one incubation of 30 s at 98 °C for enzyme activation, followed by 40 cycles at 98 °C for 3 s and 60 °C for 7 s. After the last reaction cycle, the protocol included a temperature ramp from 65 °C to 95 °C, with 0.5 °C/s increments, to exclude unspecific products with melting curve results. Data were normalized by using multiple housekeeping genes (B2m, Hprt1, Ldha, Rplp1), and analyzed by comparing $\Delta\Delta$ Ct (difference between Δ Ct values, deriving from difference between cycle threshold value Ct of target and housekeeping genes). Details about the investigated genes are reported in Table 1.

2.4. Statistical analysis

Data were analyzed using analysis of variance (ANOVA) followed by Bonferroni's *post-hoc* test to test for significance that was set at p < 0.05, with the aid of KaleidaGraph (Synergy Software) and Bio-Rad CFX Manager (Bio-Rad). In all cases, three independent experiments were carried out. Results are presented as mean value \pm standard deviation.

3. Results

An extensive characterization of the cerium oxide nanoparticles used in this study, including transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy has been previously reported [22]. Briefly, nanoparticles appear as a powder of relatively dispersed size distribution (5–80 nm), with a cubic crystalline structure, high purity, and a Ce³⁺ content of ~23%,

 Table 1

 List of investigated genes involved in ROS signaling, with Unigene and GeneBank codes, abbreviation, name, and description.

List of investigate	d genes involved in Ros	Signaning, with O	ingene and denebank codes, abbreviation, name, and description.	
Unigene	Gene bank	Symbol	Description	Gene Name
Rn.202968	NM_134326	Alb	Albumin	Alb1, Albza
Rn.6408	NM_001013413	Als2	Amyotrophic lateral sclerosis 2 (juvenile) homolog (human)	-
Rn.15681	NM_019363	Aox1	Aldehyde oxidase 1	-
Rn.88057	NM_012499	Арс	Adenomatous polyposis coli	RATAPC
Rn.32351	NM_138828	Apoe	Apolipoprotein E	APOEA
Rn.3001	NM_012520	Cat	Catalase	CS1, Cas1, Cs-1, RATCAT01, RATCATL
Rn.8019	NM_031116	Ccl5	Chemokine (C-C motif) ligand 5	Rantes, Scya5
Rn.12311	NM_053425	Ccs	Copper chaperone for superoxide dismutase	-
Rn.100909	NM_022597	Ctsb	Cathepsin B	-
Rn.5856	NM_024160	Cyba	Cytochrome b-245, alpha polypeptide	p22-phox
Rn.105938	NM_130744	Cygb	Cytoglobin	MGC95105, Staap, Stap
Rn.9470	NM_130744	Dhcr24	24-dehydrocholesterol reductase	-
Rn.11231	NM_013199	Dnm2	Dynamin 2	DYIIAAB
Rn.162682	NM_153739	Duox1	Dual oxidase 1	-
Rn.55542	NM_024141	Duox2	Dual oxidase 2	Thox2
Rn.16016	NM_001024897	Ehd2	EH-domain containing 2	MGEPS
Rn.17695	NM_001107037	Ерх	Eosinophil peroxidase	-
Rn.74906	NM_001172809	Ercc2	Excision repair cross-complementing rodent repair deficiency, complementation group 2	-
Rn.19370	NM_001107296	Ercc6	Excision repair cross-complementing rodent repair deficiency, complementation group 6	-
Rn.10798	NM_012557	Fancc	Fanconi anemia, complementation group C	Facc
Rn.3928	NM_144737	Fmo2	Flavin containing monooxygenase 2	-
Rn.54447	NM_012848	Fth1	Ferritin, heavy polypeptide 1	Fth
Rn.8365	NM_012815	Gclc	Glutamate-cysteine ligase, catalytic subunit	Glclc, MGC93096
Rn.2460	NM_017305	Gclm	Glutamate cysteine ligase, modifier subunit	Glclr
Rn.11323	NM_030826	Gpx1	Glutathione peroxidase 1	GSHPx, GSHPx-1
Rn.3503	NM_183403	Gpx2	Glutathione peroxidase 2	GPX-GI, GSHPx-2, GSHPx-GI
Rn.108074	NM_022525	Gpx3	Glutathione peroxidase 3	GSHPx-3, GSHPx-P, Gpxp
Rn.3647	NM_017165	Gpx4	Glutathione peroxidase 4	Phgpx, gpx-4, snGpx
Rn.218434	NM_001105738	Gpx5	Glutathione peroxidase 5	-
Rn.9852	NM_147165	Gpx6	Glutathione peroxidase 6	OBPII, Ry2d1
Rn.4130	NM_001106673	Gpx7	Glutathione peroxidase 7	-
Rn.19721	NM_053906	Gsr	Glutathione reductase	-
Rn.109452	NM_181371	Gstk1	Glutathione S–transferase kappa 1	GST13–13, GSTkappa
Rn.87063	NM_012577	Gstp1	Glutathione S-transferase pi 1	GST-P, Gst3, Gstp, Gstp2, MGC72668, MGC72669

(continued on next page)

Table 1 (continued)

Designer Cone Name Symbol Description Gene Name Gene Name 80,19734 No.0,1996 Hbb-12 Hemoglobin alpha, addir chin 2 HBMAL Hbb-1, Hbo1 80,1989 No.0,201971 Hayat Hech ongognate (descripting) HB20XG, Henc, Honc, Ho-1, Ho1, Np32 80,71840 No.0,019100 Hbl1 bockinate dehydrogenase I (NADP+), soluble 7-27, 11949, 11949, 11941, 11941, 11941 80,71840 No.0,019108807 Kf1 Kecatin 1 No.0,019108807 Kf1 80,171840 No.0,019108807 Kf1 Kecatin 1 No.0,019108007 Sh1 80,171840 No.0,019108807 Kf1 Kecatin 1 No.0,019108007 Sh1 80,40313 No.0,019108807 Af1 Kecatin 1 All page (Inhamydomona) 9-1 80,40313 No.0,0108807 Af1 Kecatin 1 All page (Inhamydomona) 9-1 80,40313 No.0,0108087 Af1 Kecatin 1 All page (Inhamydomona) 9-1 80,40313 No.0,0110708 Mp2 Myelpotin - 80,40313		<u></u>			
Bit 150 Nb. 2012580 Hemox 1 Hemox copygnater (decycling) 1 HEED KOK, Heav, Hinox, Ho-1, Ho], Hop 12 Bit 150 Nb. 201371 Hapa 1a Heart sheek 70kD protein LA HSST2, High70 1, Highal, Hapar 1b Bit 2581 Nb. 201310 Ish 1 Isscritate dehydrogenase 1 (NbDP*1, Soldable - Bit 17189 Nb. 201320 Erit 17 Intraflagellar transport 172 homolog (Chlamydenonas) 3b Bit 17189 Nb. 20102080 Erit 1 Kerrain 1 25 Bit 17180 Nb. 20102080 Erit 1 Kerrain 1 25 Bit 17180 Nb. 20102080 Erit 1 Chronical Security 172 homolog (Chlamydenonas) 25 Bit 17180 Nb. 20102080 Erit 1 Chronical Security 172 homolog (Chlamydenonas) 7 Bit 17180 Nb. 20102080 And Mycopolish - Bit 1720 Nb. 20102090 Mpo Mycopolish - Bit 1721 Nb. 20112091 No. 2 No. 20101000 No. 2 No. 20101000 Bit 1722 Nb. 20112091 No. 2 No. 20101000 No. 2 <td< td=""><td>Unigene</td><td>Gene bank</td><td>Symbol</td><td>Description</td><td>Gene Name</td></td<>	Unigene	Gene bank	Symbol	Description	Gene Name
Bit 1959 NM, 191971 Hispala Hispala (OKA) Protein IA Hispala, Hispala (Hispala, Hispala) 8x, 1918 NM, 191310 Idb1 Licotrace delydrogenase I (NADP*), soluble - 8x, 1918 NM, 191310 Idb1 Licotrace delydrogenase I (NADP*), soluble - 8x, 1718 NM, 191300 Krit Keat in 1 Kb1 8x, 1718 NM, 20100500 LCC (Service) - 8x, 11230 NM, 201105320 Lpo Lartoperoxidee - 8x, 11230 NM, 201105320 Lpo Lartoperoxidee - 8x, 11231 NM, 201107038 Mpo Myeoperoxidase - 8x, 11231 NM, 201107038 Mpo Myeoperoxidase - 8x, 11231 NM, 201107038 Mpo Myeoperoxidase - 8x, 11231 NM, 201107038 Mpc Nectrophil cytosolic factor 1 Ncf-1 pcTphox 8x, 11231 NM, 20110888 Npb Nectrophil cytosolic factor 2 - 8x, 12331 NM, 20110888 Npb Nectrophil cytosolic factor 2 - <td>Rn.107334</td> <td>NM_013096</td> <td>Hba-a2</td> <td>Hemoglobin alpha, adult chain 2</td> <td>HBAM, Hba-a1, Hba1</td>	Rn.107334	NM_013096	Hba-a2	Hemoglobin alpha, adult chain 2	HBAM, Hba-a1, Hba1
Rn. 3981 NML (31510) Idh 1 Isocitrate deliyefcogenase (1/NADP*), soluble - Rn. 171849 NML (053792) IR172 Intraflagellar transport 172 homolog (Chlamydomonas) Slb Rn. 171849 NML (001008802) Krt1 Keatin 1 Kb1 Rn. 172300 3M. 346005 LOC367198 Similar to Serine/threenine-protein kinase ATK - Rn. 98383 NML (00110582) Lpo Lactoperoxidase - Rn. 46511 NML (00110788) Mb Myeopebin - Rn. 47782 NML (00110788) Mpo Myeloperoxidase - Rn. 487781 NML (00110788) Mpo Myeloperoxidase - Rn. 48787 NML (00110788) Mpo Neutropilil cyteolic factor 1 Nr1-p47pbox Rn. 48787 NML (0010088) NgD Neutropilil cyteolic factor 2 - Rn. 46495 NML (00110071) No.2 Nitric oxide synthase 2, inducible No.5-1-p47pbox Rn. 19400 NML (00100171 No.2 Nitric oxide synthase 2, inducible No.5-1-p47pbox Rn. 19404 <td>Rn.3160</td> <td>NM_012580</td> <td>Hmox1</td> <td>Heme oxygenase (decycling) 1</td> <td>HEOXG, Heox, Hmox, Ho-1, Ho1, hsp32</td>	Rn.3160	NM_012580	Hmox1	Heme oxygenase (decycling) 1	HEOXG, Heox, Hmox, Ho-1, Ho1, hsp32
Rn. 171849 NM. 053792 Iff 172 Intraflagellar transport 172 homolog (Chlamydomonas) Sib Rn. 17899 NM. 00 100802 Kr1 Kreasin 1 Kol 1 Kreasin 1 Kol 1 Rn. 17399 XM. 346605 LOC367188 Similar to Scring-thronine-protein kinase ATR - - Rn. 26831 NM. 001108829 Lpo Laceperoxidase - - Rn. 40511 NM. 00110888 Mb Mysglobin - - Rn. 38757 NM. 00110984 Mpo Mysloperoxidase - - Rn. 38757 NM. 00110984 Ng Neutrophil cytosolic factor 1 NG-1, pt7phox - Rn. 18474 NM. 00110984 Ng Neutrophil cytosolic factor 2 - - Rn. 19474 NM. 0012611 No2 Ng Neutrophil cytosolic factor 2 - - Rn. 19474 NM. 0012611 No2 Nitric oxide synthase 2, inducible No2a, INos No2a, INos Rn. 19266 NM. 0012611 No2 Nitric oxide synthase 2, inducible No2a, INos <td< td=""><td>Rn.1950</td><td>NM_031971</td><td>Hspa1a</td><td>Heat shock 70kD protein 1A</td><td>HSP72, Hsp70–1, Hspa1, Hspa1b</td></td<>	Rn.1950	NM_031971	Hspa1a	Heat shock 70kD protein 1A	HSP72, Hsp70–1, Hspa1, Hspa1b
Rn. 1789 NM_001008802 Kr1 Keratin 1 Kol 1 Rn. 12309 XM. 346005 LOG 97188 Similar to Serinethreconine-protein kinase ATR (Arcasia calangerasia and Rad3-related protein) - Rn. 60838 NM_00110829 Up Lactopercordiase - Bn. 47782 NM_001107016 Mp Myeloperoxidiase - Rn. 38375 NM_001107016 Mp Myeloperoxidiase - Rn. 16231 NM_00110894 Ncf Neutrophil crossili factor 1 Ncf-1, p47phox Rn. 16464 NM_00110894 Ncf Neutrophil crossili factor 2 - Rn. 16400 NM_00110894 Ncf Neutrophil crossili factor 2 - Rn. 16401 NM_0102611 Noc Nitric oxide synthase 2, infutoble Nos2a, Noc Rn. 14744 NM_0518524 Noc NxDPH oxididae organizer 1 - Rn. 187744 NM_001107896 Nxol NxDPH oxididae organizer 1 - Rn. 1274 NM_00110780 Nxol NxDPH oxididae organizer 1 - Rn. 1284 NM_00110780	Rn.3561	NM_031510	Idh1	Isocitrate dehydrogenase 1 (NADP+), soluble	-
8.112309 XM.346905 LOC367188 Similar to Serine/threnine-protein kinase ATR (Alexa) telangeresia and fact) related protein) - 8.8.00583 NM.001105829 Lp0 Latocoprovidase - 8.8.49782 NM.001107936 Mpo Myeloperoxidase - 8.8.3875 NM.001107936 Mpo Myeloperoxidase - 8.1.62331 RM.00110884 Ncf Neutrophili cytosolic factor 2 - 8.1.62331 RM.00110884 Ncf Neutrophili cytosolic factor 2 - 8.1.62465 RM.033399 Ngb Neutrophili cytosolic factor 2 - 8.1.1040 NM.012811 Nos2 Nitric oxide synthase 2, inducible Nos2x, Nos 8.1.1404 NM.021811 Nos4 NEUTROPHI oxidase cytostate 1 - 8.1.1240 NM.011010686 Nox01 NADPH oxidase crivator 1 - 8.1.1234 SM.010110686 Nox01 NADPH oxidase crivator 1 - 8.1.1244 SM.01010686 Nox01 NADPH oxidase crivator 1 Dia4, MCC13075 8.1.1244 SM.011010686	Rn.171849	NM_053792	Ift172	Intraflagellar transport 172 homolog (Chlamydomonas)	Slb
88.1.1.2.36 N.M., 2001/108290 I.p. L.Actor peroxidase - 88. 40.9511 N.M., 2011/108290 I.p. Lactor peroxidase - 88. 40.9511 N.M., 2011/08290 Mp. Myeloperoxidase - 88. 38.955 N.M., 2011/09341 Nct. Neutrophil cytosolic factor 1 Nct. L. p47phox 88. 16.2331 N.M., 2011/09344 Nct. Neutrophil cytosolic factor 2 - 88. 16.4345 N.M., 2033359 Ngb Neutrophil cytosolic factor 2 - 88. 16.4454 N.M., 2033359 Ngb Neutrophil cytosolic factor 2 - 88. 16.4454 N.M., 2033359 Ngb Neutrophil cytosolic factor 2 - 88. 16.4454 N.M., 2033359 Ngb Neutrophil cytosolic factor 2 - 88. 16.4454 N.M., 203410 No. Nitric codd cytosolic factor 2 - 88. 16.4454 N.M., 203411 No. N.D. 108740 No. No. 108740 No. 88. 16.4454 N.M., 201106980 No. N.D. 2014 No. 20110600 No. No. 108140 No. 20110600<	Rn.31789	NM_001008802	Krt1	Keratin 1	Kb1
Rn. 40511 NNL 021588 Mb Myoglobin - Rn. 47782 NNL 001107036 Mpo Myeloperexidase - Rn. 38575 NNL 083734 Ncf. Neutrophil cytosolic factor 1 Ncf-1, p47plox Rn. 162331 NNL 001100984 Ncf. Neutrophil cytosolic factor 2 - Rn. 16445 NNL 033359 Ngb Neutrophil cytosolic factor 2 - Rn. 19400 NNL 012611 Nos.2 Nitric exide synthase 2, Inducible Nos2a, INos Rn. 194744 NNL 093324 Nox.4 NADPH oxidase 4ctivator 1 - Rn. 1937864 NNL 001100171 Nox.1 NADPH oxidase activator 1 - Rn. 1937864 NNL 001108886 Nox.01 NADPH oxidase activator 1 - Rn. 1937864 NNL 001108886 Nox.01 NADPH oxidase activator 1 - Rn. 193786 NNL 0071000 Npd1 NADPH oxidase activator 1 - Rn. 193786 NNL 007100 Npd1 NADPH oxidase activator 1 - Rn. 193786 NNL 007100 Npd1 NA	Rn.112309	XM_346005	LOC367198		-
RA 7782 NML 001107036 Mpo Myeloperoxidase - Ra 38575 NML 053734 Ncf1 Neurophil cytosolic factor 1 Ncf-1, p47phox Ra 162331 NML 001100984 Ncf2 Neurophil cytosolic factor 2 - Ra 164645 NML 033359 Ngb Neurophil cytosolic factor 2 - Ra 16400 NML 026111 Nos2 Nitric oxide synthase 2, inducible Nos2a, INos Ra 14744 NML 033524 Nov4 NADPH oxidase 4 - Ra 162651 NML 001100171 Nova1 NADPH oxidase oxpanizer 1 - Ra 137764 NML 001106986 Nox01 NADPH oxidase oxpanizer 1 - Ra 11234 NML 001106986 Nox01 NADPH oxidase oxpanizer 1 - Ra 11234 NML 001106986 Nox01 NADPH oxidase oxpanizer 1 - Ra 11234 NML 0017009 Nqc1 NADPH oxidase oxpanizer 1 - Ra 11234 NML 0017009 Nqc1 Nudrify dehydrogenase, quinone 1 Dia4, MGC39075 Ra 1234 NML 057120 Nudrify dehydrogenas	Rn.60583	NM_001105829	Lpo	Lactoperoxidase	-
Rn. 183975 NNL.053734 Nrf. Neutrophil cytosolic factor 1 Ncf-1, p47phox Rn. 162331 NNL.001100984 Nrf. Neutrophil cytosolic factor 2 - Rn. 16465 NNL.033359 Ngb Neutrophil cytosolic factor 2 - Rn. 16400 NNL.023511 Nsc. Nitric oxide synthase 2, inducible Noc2a, INos Rn. 14744 NNL.035524 Nox4 NADPH oxidase 4 - Rn. 162651 NNL.001100171 Noxa1 NADPH oxidase oxyanizer 1 - Rn. 137764 NNL.001100986 Nox01 NADPH doxidase oxyanizer 1 - Rn. 16693 NNL.017000 Nqc1 NADPH doxidase oxyanizer 1 - Rn. 10669 NNL.057120 Nuldt Nudcit (nucleoside diphosphate linked moiety X)-type motif 1 Mth1 Rn. 2845 NNL.057143 Park7 Parkinson disease (autosomal recessive, early onset) 7 CAP1, DJ-1, DJ1, SP22 Rn. 2845 NNL.057114 Prdx1 Peroxiredoxin 2 Tdpx1 Rn. 2941 NNL.022540 Prdx3 Peroxiredoxin 3 Prx3 Rn	Rn.40511	NM_021588	Mb	Myoglobin	-
B. 162331 NM_001100984 Ncf2 Neutrophil cytosolic factor 2 - Bn. 64645 NM_033359 Ngb Neuroglobin - Bn. 10400 NM_012611 Nos2 Nitric oxide synthase 2, inducible Nos2a, Nos Bn. 14744 NM_035324 Nox4 NADPH oxidase 4 - Bn. 162651 NM_001100171 Noxa1 NADPH oxidase activator 1 - Bn. 137764 NM_001100886 Noxo1 NADPH oxidase organizer 1 - Bn. 11234 NM_017000 Noxo1 NADPH delydrogenase, quinone 1 Dla4, MGC93975 Bn. 10696 NM_017000 Nq01 NADPH delydrogenase, quinone 1 Mfth Bn. 1074 Nul 017000 Nq01 NADPH delydrogenase, quinone 1 Dla4, MGC93975 Bn. 1075 NM_0175120 Nul 1 Nul 10741 delydrogenase, quinone 1 Mfth Bn. 2075 NM_057141 Prdx1 Parkinson disease (autosomal recessive, early onset) 7 CAP1, Dj-1, Dj1, SP22 Bn. 2084 NM_057114 Prdx1 Peroxiredoxin 1 Hbp.23, MCC108617 Bn. 211	Rn.47782	NM_001107036	Мро	Myeloperoxidase	-
Rn. 64645 NM_033359 Ngb Neuroglobin - Rn. 10400 NM_012611 Nos2 Nitric oxide synthase 2, inducible Nos2a, iNos Rn. 14744 NM_053524 Nox4 NAPPH oxidase 4 - Rn. 162651 NM_001100171 Noxa1 NAPPH oxidase activator 1 - Rn. 137764 NM_001100986 Nax01 NAPPH oxidase organizer 1 - Rn. 12344 NM_017000 Nq01 NAD(PH oxidase organizer 1 - Rn. 10669 NM_057120 Nudr1 Nudck (nucleoside diphosphate linked molety X)-type motif 1 Mth11 Rn. 30105 NM_057143 Park7 Parkinson disease (autosomal recessive, early onset) 7 CAP1. Dj-1, Dj1, SP22 Rn. 2845 NM_057144 Prdx1 Peroxiredoxin 1 Hbp23, MCC108617 Rn. 2511 NM_017169 Prdx2 Peroxiredoxin 2 Tdpx1 Rn. 17958 NM_053512 Prdx3 Peroxiredoxin 3 Prx3 Rn. 2944 NM_053610 Prdx5 Peroxiredoxin 6 - Rn. 29396 NM_0105377 Psmb5 </td <td>Rn.38575</td> <td>NM_053734</td> <td>Ncf1</td> <td>Neutrophil cytosolic factor 1</td> <td>Ncf-1, p47phox</td>	Rn.38575	NM_053734	Ncf1	Neutrophil cytosolic factor 1	Ncf-1, p47phox
Rn.10400 NM_012611 Nos2 Nitric oxide synthase 2, inducible Nos2a, iNos Rn.14744 NM_053524 Nox4 NADPH oxidase 4 - Rn.162651 NM_001100171 Noxa1 NADPH oxidase activator 1 - Rn.137764 NM_001106986 Nox01 NADPH oxidase organizer 1 - Rn.11234 NM_017000 Nq01 NAD(PH oxidase organizer 1 Dis4, MCG93075 Rn.10669 NM_057120 Nudt1 Nudix (nucleoside diphosphate linked moiety X)-type motif 1 Mth1 Rn.30105 NM_057143 Park7 Parkinson disease (autosomal recessive, early onset) 7 CAP1, Dj-1, Dj1, SP22 Rn.2845 NM_057144 Prdx1 Peroxiredoxin 1 Hbp23, MCG108617 Rn.2511 NM_017169 Prdx2 Peroxiredoxin 2 Tdpx1 Rn.17958 NM_03512 Prdx3 Peroxiredoxin 4 MCC72744 Rn.2944 NM_053610 Prdx5 Peroxiredoxin 6 - Rn.42 NM_05376 Prdx6 Preoxiredoxin 6 - Rn.2 NM_01015277 Psmb5<	Rn.162331	NM_001100984	Ncf2	Neutrophil cytosolic factor 2	-
Rn.14744 NNL,053524 Nox4 NADPH oxidase 4 - Rn.162651 NNL,001100171 Noxa1 NADPH oxidase activator 1 - Rn.137764 NNL,001106986 Nox01 NADPH oxidase organizer 1 - Rn.12344 NNL,017000 Nq01 NAD(P)H dehydrogenase, quinone 1 Dia4, MCC93075 Rn.10669 NNL,057120 Nudt1 Nudxi (nucleoside diphosphate linked moiety X)-type motif 1 Mth1 Rn.30105 NNL,057143 Park7 Parkinson disease (autosomal recessive, early onset) 7 CAP1, DJ-1, DJ1, SP22 Rn.2845 NNL,057114 Prdx1 Peroxiredoxin 1 Hbp23, MCC108617 Rn.2511 NNL,017169 Prdx2 Peroxiredoxin 2 Tdpx1 Rn.2011 NNL,022540 Prdx3 Peroxiredoxin 3 Prx3 Rn.17958 NML,035610 Prdx5 Peroxiredoxin 5 Aoeb166 Rn.42 NNL,053610 Prdx5 Peroxiredoxin 6 - Rn.43 NNL,012631 Prmp Prion protein Prt. Prm Rn.2 NNL,010105727 Psmb5 <td>Rn.64645</td> <td>NM_033359</td> <td>Ngb</td> <td>Neuroglobin</td> <td>-</td>	Rn.64645	NM_033359	Ngb	Neuroglobin	-
Rn.162651 NM_001100171 Noxa1 NADPH oxidase activator 1 - Rn.137764 NM_001106986 Noxo1 NADPH oxidase organizer 1 - Rn.12244 NM_017000 Nqo1 NAD(P)H dehydrogenase, quinone 1 Dia4, MCC93075 Rn.10669 NM_057120 Nuld1 Nuldix (nucleoside diphosphate linked moiety X)-type motif 1 Mth1 Rn.30105 NM_057143 Park7 Parkinson disease (autosomal recessive, early onset) 7 CAP1, D]-1, Dj1, SP22 Rn.2845 NM_057144 Prdx1 Peroxiredoxin 1 Hbp23, MCC108617 Rn.2511 NM_017169 Prdx2 Peroxiredoxin 2 Tdpx1 Rn.2511 NM_02540 Prdx3 Peroxiredoxin 3 Prx3 Rn.17958 NM_053512 Prdx4 Peroxiredoxin 4 MCC72744 Rn.2944 NM_053610 Prdx5 Peroxiredoxin 5 Aoeb166 Rn.42 NM_053576 Prdx6 Peroxiredoxin 6 - Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_001	Rn.10400	NM_012611	Nos2	Nitric oxide synthase 2, inducible	Nos2a, iNos
Rn.137764 NM_001106386 Nox01 NADPH oxidase organizer 1 - Rn.11234 NM_017000 Nqo1 NAD(P)H dehydrogenase, quinone 1 Dia4, MCC93075 Rn.10669 NM_057120 Nudt1 Nudix (nucleoside diphosphate linked moiety X)-type motif 1 Mth1 Rn.30105 NM_057143 Park7 Parkinson disease (autosomal recessive, early onset) 7 CAP1, DJ-1, DJ1, SP22 Rn.2845 NM_057114 Prdx1 Peroxiredoxin 1 Hbp23, MGC108617 Rn.2511 NM_017169 Prdx2 Peroxiredoxin 2 Tdpx1 Rn.2011 NM_02540 Prdx3 Peroxiredoxin 3 Prx3 Rn.17958 NM_053512 Prdx4 Peroxiredoxin 4 MGC72744 Rn.2944 NM_053610 Prdx5 Peroxiredoxin 6 - Rn.42 NM_05376 Prdx6 Peroxiredoxin 6 - Rn.2 NM_0102631 Prmp Prion protein Prt. Prm Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_017043	Rn.14744	NM_053524	Nox4	NADPH oxidase 4	-
Rn.11234 NM_017000 Nqo1 NAD(P)H dehydrogenase, quinone 1 Dia4, MGC93075 Rn.10669 NM_057120 Nudt1 Nudix (nucleoside diphosphate linked molety X)-rype motif 1 Mth1 Rn.30105 NM_057143 Park7 Parkinson disease (autosomal recessive, early onset) 7 CAP1, DJ-1, Dj1, SP22 Rn.2845 NM_057114 Prdx1 Peroxiredoxin 1 Hbp23, MGC108617 Rn.2511 NM_017169 Prdx2 Peroxiredoxin 2 Tdpx1 Rn.2011 NM_022540 Prdx3 Peroxiredoxin 3 Prx3 Rn.17958 NM_053512 Prdx4 Peroxiredoxin 4 MGC72744 Rn.2944 NM_053610 Prdx5 Peroxiredoxin 6 - Rn.42 NM_053576 Prdx6 Peroxiredoxin 6 - Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_017043 Ptgs1 Prostaglandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2	Rn.162651	NM_001100171	Noxa1	NADPH oxidase activator 1	-
Rn.10669 NM_057120 Nudt1 Nudix (nucleoside diphosphate linked moiety X)-type motif 1 Mth1 Rn.30105 NM_057143 Park7 Parkinson disease (autosomal recessive, early onset) 7 CAP1, DJ-1, Dj1, SP22 Rn.2845 NM_057114 Prdx1 Peroxiredoxin 1 Hbp23, MGC108617 Rn.2511 NM_017169 Prdx2 Peroxiredoxin 2 Tdpx1 Rn.2011 NM_022540 Prdx3 Peroxiredoxin 3 Prx3 Rn.17958 NM_053512 Prdx4 Peroxiredoxin 4 MGC72744 Rn.2944 NM_053610 Prdx5 Peroxiredoxin 5 Aoeb166 Rn.42 NM_053576 Prdx6 Peroxiredoxin 6 - Rn.2 NM_012631 Prnp Prion protein PrP,Prm Rn.2 NM_001105727 Psmb5 Protasjandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017032 Ptgs1 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.4197 NM_139192	Rn.137764	NM_001106986	Noxo1	NADPH oxidase organizer 1	-
Rn.30105 NM_057143 Park7 Parkinson disease (autosomal recessive, early onset) 7 CAP1, DJ-1, DJ1, SP22 Rn.2845 NM_057114 Prdx1 Peroxiredoxin 1 Hbp23, MGC108617 Rn.2511 NM_017169 Prdx2 Peroxiredoxin 2 Tdpx1 Rn.2011 NM_022540 Prdx3 Peroxiredoxin 3 Prx3 Rn.17958 NM_053512 Prdx4 Peroxiredoxin 4 MGC72744 Rn.2944 NM_053610 Prdx5 Peroxiredoxin 5 Aoeb166 Rn.42 NM_053676 Prdx6 Peroxiredoxin 6 - Rn.3936 NM_012631 Pmp Prion protein PrP, Pm Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_017043 Ptgs1 Prostaglandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_019192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4197 NM_173120 Se	Rn.11234	NM_017000	Nqo1	NAD(P)H dehydrogenase, quinone 1	Dia4, MGC93075
Rn.2845 NM_057114 Prdx1 Peroxiredoxin 1 Hbp23, MCc108617 Rn.2511 NM_017169 Prdx2 Peroxiredoxin 2 Tdpx1 Rn.2011 NM_022540 Prdx3 Peroxiredoxin 3 Prx3 Rn.17958 NM_053512 Prdx4 Peroxiredoxin 4 MCC72744 Rn.2944 NM_053610 Prdx5 Peroxiredoxin 5 Aoeb166 Rn.42 NM_053576 Prdx6 Peroxiredoxin 6 - Rn.3936 NM_012631 Pmp Prion protein PrP, Pm Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_017043 Ptgs1 Prostaglandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.1497 NM_173120 Sels Selenoprotein S sg2 Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1	Rn.10669	NM_057120	Nudt1	Nudix (nucleoside diphosphate linked moiety X)-type motif 1	Mth1
Rn.2511 NM_017169 Prdx2 Peroxiredoxin 2 Tdpx1 Rn.2011 NM_022540 Prdx3 Peroxiredoxin 3 Prx3 Rn.17958 NM_053512 Prdx4 Peroxiredoxin 4 MGC72744 Rn.2944 NM_053610 Prdx5 Peroxiredoxin 5 Aoeb166 Rn.42 NM_053576 Prdx6 Peroxiredoxin 6 - Rn.3936 NM_012631 Prnp Prion protein PrP,Prn Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_017043 Ptgs1 Prostaglandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.1023 NM_139192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4497 NM_019192 Sels Selenoprotein P, plasma, 1 -	Rn.30105	NM_057143	Park7	Parkinson disease (autosomal recessive, early onset) 7	CAP1, DJ-1, Dj1, SP22
Rn.2011 NM_022540 Prdx3 Peroxiredoxin 3 Prx3 Rn.17958 NM_053512 Prdx4 Peroxiredoxin 4 MGC72744 Rn.2944 NM_053610 Prdx5 Peroxiredoxin 5 Aoeb166 Rn.42 NM_053576 Prdx6 Peroxiredoxin 6 - Rn.3936 NM_012631 Prmp Prion protein PrP, Prn Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_017043 Ptgs1 Prostaglandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.1023 NM_139192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4197 NM_019192 Sels Selenoprotein P, plasma, 1 - Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	Rn.2845	NM_057114	Prdx1	Peroxiredoxin 1	Hbp23, MGC108617
Rn.17958 NM_053512 Prdx4 Peroxiredoxin 4 MGC72744 Rn.2944 NM_053610 Prdx5 Peroxiredoxin 5 Aoeb166 Rn.42 NM_053576 Prdx6 Peroxiredoxin 6 - Rn.3936 NM_012631 Prnp Prion protein PrP, Prn Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_017043 Ptgs1 Prostaglandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.1023 NM_139192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4197 NM_173120 Sels Selenoprotein P, plasma, 1 - Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	Rn.2511	NM_017169	Prdx2	Peroxiredoxin 2	Tdpx1
Rn.2944 NM_053610 Prdx5 Peroxiredoxin 5 Aoeb166 Rn.42 NM_053576 Prdx6 Peroxiredoxin 6 - Rn.3936 NM_012631 Prnp Prion protein PrP, Prn Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_017043 Ptgs1 Prostaglandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.1023 NM_139192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4197 NM_173120 Sels Selenoprotein S sg2 Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	Rn.2011	NM_022540	Prdx3	Peroxiredoxin 3	Prx3
Rn.42 NM_053576 Prdx6 Peroxiredoxin 6 - Rn.3936 NM_012631 Prnp Prion protein PrP, Prn Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_017043 Ptgs1 Prostaglandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.1023 NM_139192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4197 NM_173120 Sels Selenoprotein S sg2 Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	Rn.17958	NM_053512	Prdx4	Peroxiredoxin 4	MGC72744
Rn.3936 NM_012631 Prnp Prion protein PrP, Prn Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_017043 Ptgs1 Prostaglandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.1023 NM_139192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4197 NM_173120 Sels Selenoprotein S sg2 Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	Rn.2944	NM_053610	Prdx5	Peroxiredoxin 5	Aoeb166
Rn.2 NM_001105727 Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 - Rn.44404 NM_017043 Ptgs1 Prostaglandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.1023 NM_139192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4197 NM_173120 Sels Selenoprotein S sg2 Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	Rn.42	NM_053576	Prdx6	Peroxiredoxin 6	-
Rn.44404 NM_017043 Ptgs1 Prostaglandin-endoperoxide synthase 1 Cox-3, Cox1, Cox3 Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.1023 NM_139192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4197 NM_173120 Sels Selenoprotein S sg2 Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	Rn.3936	NM_012631	Prnp	Prion protein	PrP, Prn
Rn.44369 NM_017232 Ptgs2 Prostaglandin-endoperoxide synthase 2 COX-2, Cox2 N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.1023 NM_139192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4197 NM_173120 Sels Selenoprotein S sg2 Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	Rn.2	NM_001105727	Psmb5	Proteasome (prosome, macropain) subunit, beta type 5	-
N/A NM_001100528 Rag2 Recombination activating gene 2 - Rn.1023 NM_139192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4197 NM_173120 Sels Selenoprotein S sg2 Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	Rn.44404	NM_017043	Ptgs1	Prostaglandin-endoperoxide synthase 1	Cox-3, Cox1, Cox3
Rn.1023 NM_139192 Scd1 Stearoyl-Coenzyme A desaturase 1 - Rn.4197 NM_173120 Sels Selenoprotein S sg2 Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	Rn.44369	NM_017232	Ptgs2	Prostaglandin-endoperoxide synthase 2	COX-2, Cox2
Rn.4197 NM_173120 Sels Selenoprotein S sg2 Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	N/A	NM_001100528	Rag2	Recombination activating gene 2	-
Rn.1451 NM_019192 Sepp1 Selenoprotein P, plasma, 1 -	Rn.1023	NM_139192	Scd1	Stearoyl–Coenzyme A desaturase 1	-
	Rn.4197	NM_173120	Sels	Selenoprotein S	sg2
	Rn.1451	NM_019192	Sepp1	Selenoprotein P, plasma, 1	-
Rn.137930 XM_225268 Serpinb1b Serine (or cysteine) peptidase inhibitor, clade B, member 1b RGD1560658	Rn.137930	XM_225268	Serpinb1b	Serine (or cysteine) peptidase inhibitor, clade B, member 1b	RGD1560658

Table 1 (continued)

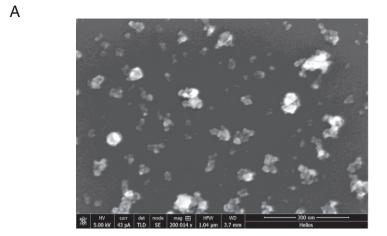
Unigene	Gene bank	Symbol	Description	Gene Name
Rn.162022	NM_138832	Slc38a1	Solute carrier family 38, member 1	Ata1, GlnT, Sat1
Rn.81033	NM_138854	Slc38a5	Solute carrier family 38, member 5	SN2
Rn.6059	NM_017050	Sod1	Superoxide dismutase 1, soluble	CuZnSOD
Rn.10488	NM_017051	Sod2	Superoxide dismutase 2, mitochondrial	-
Rn.10358	NM_012880	Sod3	Superoxide dismutase 3, extracellular	ECSODPT
Rn.107103	NM_181550	Sqstm1	Sequestosome 1	Osi, ZIP, ZIP3
Rn.2835	NM_001047858	Srxn1	Sulfiredoxin 1 homolog (S. cerevisiae)	Ab2-390, Npn3
Rn.91199	NM_019353	Тро	Thyroid peroxidase	-
Rn.29777	NM_053800	Txn1	Thioredoxin 1	Txn
Rn.2758	NM_001008767	Txnip	Thioredoxin interacting protein	MGC94673, Vdup1
Rn.67581	NM_031614	Txnrd1	Thioredoxin reductase 1	MGC93353, Tr
Rn.6300	NM_022584	Txnrd2	Thioredoxin reductase 2	MGC93435, Tr3, Trxr2, Trxrd2
Rn.13333	NM_019354	Ucp2	Uncoupling protein 2 (mitochondrial, proton carrier)	-
Rn.9902	NM_013167	Ucp3	Uncoupling protein 3 (mitochondrial, proton carrier)	-
Rn.2710	NM_031140	Vim	Vimentin	-
Rn.94978	NM_031144	Actb	Actin, beta	Actx
Rn.1868	NM_012512	B2m	Beta-2 microglobulin	-
Rn.47	NM_012583	Hprt1	Hypoxanthine phosphoribosyltransferase 1	Hgprtase, Hprt, MGC112554
Rn.107896	NM_017025	Ldha	Lactate dehydrogenase A	Ldh1
Rn.973	NM_001007604	Rplp1	Ribosomal protein, large, P1	MGC72935
				-

ideal for an efficient NC redox activity. SEM imaging reported in Fig. 1A confirms poly-dispersion of the sample.

Fig. 1B depicts UV/Vis spectrum of NC dispersed in aqueous solution that highlights the typical absorbance peaks at around 220 nm and 310 nm, ascribable to cerium(III) and cerium(IV) respectively [25,26], thus confirming the coexistence of the fundamental species for nanoceria catalytic activity.

Confocal microscopy confirmed the internalization of cerium oxide nanoparticles by PC12 cells. Confocal images are reported in Fig. 2. After 72 h of incubation with 20 µg/ml of Oregon Green labeled NC, cells internalized nanoparticles to a large extent: the internalization process can in fact be appreciated by the presence, inside the cell cytoplasm, of several highly fluorescent green spots. Cytoskeletal f-actin staining in red and nucleus counterstaining in blue were performed for a better interpretation of the images. No evidence of NC in the cell nuclei can be observed. A 3D rendering and a Z-stack through confocal microscopy of PC12 cells internalizing fluorescent NC were also performed and reported in the Supplementary material.

Of all the investigated genes after the 72 h treatment, we noticed important statistically significant differences (p<0.05) in the transcription of some of these genes, as described in the following. In 20 μ g/ml treated samples, Gpx5, Gpx6, Gpx7, Lpo, Ccl5, Fmo2, Krt1, Sepp1 and Ucp3 were down-regulated, while Ncf1, Sod3, and Cygb were up-regulated (Fig. 3A). Instead, in 50 μ g/ml treated samples, a down-regulation of Gpx2, Gpx5, Gpx6, Gpx7, Lpo, Ccl5, Fmo2, Krt1, Nos2, Sepp1, Ucp3, and Ngb, and an


up-regulation of Hspa1a, Ncf1, Sod3, and Cygb (Fig. 3B) can be pointed out (Table 2).

4. Discussion

The elaboration of antioxidative strategies addressed to the central nervous system (CNS) has a significant relevance since this tissue results to be particularly vulnerable to oxidative stress from a molecular up to a functional level. CNS is in fact abundant in redox-active metals (iron and copper, able to damage DNA), and in fatty unsaturated lipids that may serve as substrates for lipid peroxidation [27]; whereas at a metabolic level, it displays an elevated consumption of oxygen through the mitochondrial respiratory chain [28].

In recent years, the connection between oxidative stress and the onset of several neurodegenerative pathologies like Alzheimer's disease and Parkinson's disease has been well documented [29,30]. In particular, dopaminergic neurons seem to be prone to oxidative stress due to their specific metabolism. Dopamine itself and its metabolites containing two hydroxyl groups are indeed able to exert cytotoxic effects on dopaminergic neurons and surrounding microglia, through the production of superoxide and dopamine quinones. For a comprehensive review of these phenomena, the reader is referred to [31].

Thanks to its well known ROS scavenging properties (mimicking the action of superoxide dismutase and of catalase, enzymes that protect cells against superoxide radicals and H_2O_2 , respectively), NC seems to

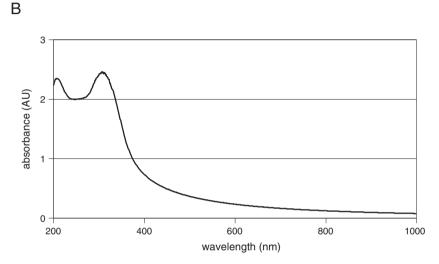


Fig. 1. SEM image (A) and UV/Vis spectrum (B) of cerium oxide nanoparticles in aqueous dispersion.

fulfill well the purpose of reducing oxidative stress in the considered model of neural cells. Highly promising opportunities are thus disclosed for the treatment of different pathologies of the central nervous system. Even in the absence of cellular insults, the alteration of regulation of several genes related to ROS metabolism could indeed provide a good evidence of how NC may intervene in attenuating oxidative conditions and contrasting those events that could result into a pathological state. In many cases, down- or up-regulation of the analyzed genes seems to be dose-dependent; however, for some genes (for instance Gpx2, Ncf1, Sod3), this dependence does not occur. Of course, just two tested concentrations are not enough in order to assess any possible modulation of gene transcription by NC treatment, and these dose-dependent effects will deserve further studies, in order to elucidate any possible mechanism of modulation of the investigated processes due to a broader range of NC concentrations.

In order to facilitate the discussion of the obtained results, we grouped the genes with an altered transcription profile into three categories: genes involved in antioxidant defense (Fig. 4A), genes involved in ROS metabolism (Fig. 4B), and genes coding for oxygen transporters (Fig. 4C).

Genes coding some members of the glutathione peroxidase family (Gpx2, Gpx5, Gpx6, and Gpx7) resulted significantly down-regulated (Fig. 4A). The products of these genes are considered as among the most important components of organism antioxidant defense, in particular in the CNS [32], playing a major role in the reduction of hydrogen peroxide and organic hydroperoxides, by using reduced glutathione [33]. A decrement of their expression suggests a compensatory mechanism triggered by the presence of the nanoparticles: since ROS are largely

scavenged by NC, a feedback mechanism induces cells a lower expression of the natural ROS scavengers, because their action is supported/replaced by NC.

Lpo is a gene encoding the enzyme lactoperoxidase, a *heme* containing glycoprotein that catalyzes the oxidation of halides and pseudo-halides by hydrogen peroxide, and generates products owning an important antimicrobial activity [34]. This process is strictly correlated to the presence of superoxide radicals, and the inhibitory effect of superoxide dismutase (SOD) is largely documented [35]: it is thus clear as SOD activity of NC can interfere with Lpo, by reducing the presence of superoxide radicals, and thus decreasing its transcription level (Fig. 4A).

Chemokine (C–C motif) ligand 5 (also CCL5) is a protein encoded by the Ccl5 gene, also known as RANTES (Regulated And Normal T cell Expressed and Secreted), and represents a chemokine that normally acts as a mediator factor able to recruit leukocytes under inflammatory conditions: by infiltration of leukocytes into inflamed sites, tissue damage following oxidative stress typically undergoes exacerbation. In the CNS, this chemokine is secreted by glial cells, and therefore many studies are addressed to elucidating its role into neurodegeneration.

Previous studies devoted to the assessment of gene expression in glial cells showed that, following astrocyte stimulation with an inflammatory cytokine (TNF α), Ccl5 transcription was up-regulated by about three times with respect to control cultures [36]. Moreover, in an attempt at elucidating activated glial role in central neuron inflammation and death, other authors showed how interleukin-1 β modulation through antioxidants significantly decreases the release of reactive oxygen species and CCL5 by astrocytes [37]. Other evidences showed that high levels of CCL5 have a strongly positive association with autoimmune

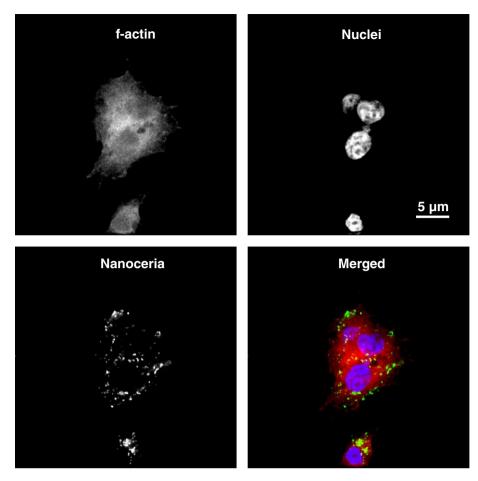


Fig. 2. Confocal images showing nanoceria (in green) internalization by PC12 cells. Cytoskeletal f-actin is stained in red, while nuclei are stained in blue.

diseases like systemic lupus erythematosus [38]. Furthermore, in another anatomical district (*i.e.*, myocardium), CCL5 antagonism was demonstrated as an effective means to increase myocardium recovery in early reperfusion by decreasing leukocyte recruitment after infarction [39].

Considered our finding that Ccl5 transcription is decreased upon administration of NC (Fig. 4B), these studies strongly encourage further investigations on the applicability of cerium oxide nanoparticles as therapeutic agents able to decrease oxidative stress and inflammation that characterize many CNS diseases.

Fmo2 gene encodes flavin monooxygenase 2, an enzyme involved in the oxygenation of several heteroatom-containing nucleophilic compounds, the expression of which undergoes modulation at different levels, with differences related to species, gender and tissue [40]. In recent years, an alteration of Fmo was hypothesized to be correlated with oxidative stress characterizing amyotrophic lateral sclerosis [41]; furthermore, Fmo2 was found to be significantly up-regulated in a mouse model of non-alcoholic steatohepatitis, providing supporting evidence on the relation of oxidative stress and disease state development [42].

Even though the administration of NC was associated to a decreased Fmo2 transcription in our neural cell model (Fig. 4B), being a functional allele coding for full-length transcript of Fmo2 missing in Caucasian humans and occurring at a frequency of 13–20% in African Americans [40], further studies are still required to clarify the significance of this finding.

The intronless gene Hspa1 encodes a 70 kDa heat shock protein (HSP70-1) member of the heat shock protein 70 family, a chaperon protein that enables the cells to face harmful aggregations of proteins during and following an external stress. Its expression therefore confers

protection against damages induced by heat, ischemia, and oxidative stress, both *in vitro* and *in vivo* [43]. The over-expression of HSP70 in the nervous system is proven to play a protective role in several different neuronal disease models, protecting neurons from protein aggregation and toxicity, and cells from apoptosis and inflammation [44].

Parkinson's disease, for example, is characterized by the progressive and selective loss of dopaminergic neurons in the *substantia nigra*, and by the presence of intracellular fibrillar α -Syn protein aggregates (Lewy bodies) in the surviving nigral neurons [45]. α -Syn is a 140-amino acid neuronal protein, usually unfolded in aqueous solution, but that can form fibrillar species and insoluble β -sheet-rich fibers [46]. It has been demonstrated that HSP70 is able to reduce α -Syn accumulation, and thus toxicity, in different models of Parkinson's disease [47], by inhibiting α -Syn fibrillar assembly and amyloid formation, and conversely stimulating the formation of amorphous aggregates [48].

A similar neuroprotective role for HSP70 was observed in Alzheimer's disease, a neurodegenerative pathology characterized by a strong extracellular accumulation of amyloid- β peptide (A β), jointly to an intracellular accumulation of abnormally phosphorylated *tau* protein as neurofibrillary tangles [49]. HSP70 is able to interact with A β structures, inhibiting protein aggregation [50] and incrementing A β clearance [51].

Our results, which indicate an up-regulation of Hspa1a in PC12 cells treated with NC (Fig. 4B), thus suggest an indirect protective role of these nanoparticles, and further strengthen their possible application in neurodegenerative pathologies.

Cytokeratins are cytoskeletal filaments with intermediate size, mainly expressed in epithelial cells and in some epithelium-derived tumors, including PC12 cells [52]; among these, keratin 1 (encoded by Krt1

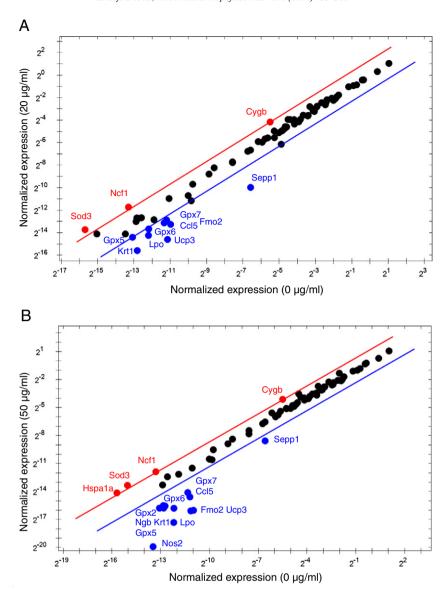
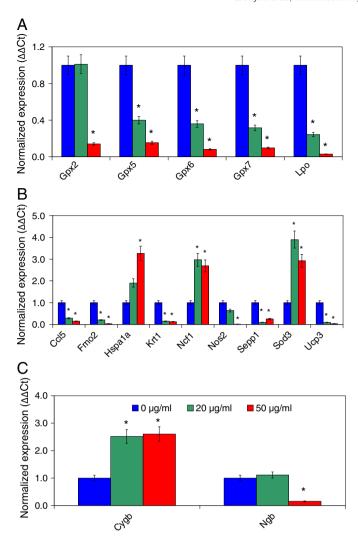


Fig. 3. Scatter plots showing up- and down-regulation of analyzed genes on PC12 cells following treatment with 20 (A) and 50 (B) μ g/ml of nanoceria with respect to control cultures (NC = 0 μ g/ml).


 Table 2

 Fold difference (up- or down-regulation) of genes affected by nanoceria treatment.

Gene	Fold difference with respect to 0 µg/ml		
	$NC = 20 \mu g/ml$	$NC = 50 \mu g/ml$	
Ccl5	-3.4	-6.7	
Cygb	2.5	2.5	
Fmo2	-4.8	-33.3	
Gpx2	1.0	-7.1	
Gpx5	-2.5	-6.5	
Gpx6	-2.8	-12.2	
Gpx7	-3.2	-10.4	
Hspala	1.9	3.3	
Krtl	-6.7	-7.7	
Lpo	-4.1	-34.7	
Ncfl	3.0	2.7	
Ngb	1.1	-6.4	
Nos2	-1.6	-86.8	
Sepp1	-7.6	-4.0	
Sod3	3.9	2.9	
Ucp3	-10.9	-30.3	

gene) is abundant above the basal membrane where cells are migrating or, in particular, undergoing desquamation [53]. The interest revolving around Krt1 is mainly due to the fact that mutations to Krt1 gene are associated to severe epidermis disorders such as epidermolytic hyperkeratosis [54]. Very few evidences are present in the literature concerning Krt1 expression in different tissues, for example the hepatic one [55], evidencing the correlation between altered Krt1 regulation and oxidative stress. Among these, it is interesting to report that Krt1 mRNA expression was increased upon oxidative stress in human umbilical vein endothelial cells. KRT1 protein expression was significantly increased under the same conditions as well [56]. Our finding of a decreased mRNA expression in PC12 cells upon NC administration (Fig. 4B) may be thus a good indication of a decreased oxidative stress in cells, supporting the need of further studies assessing the significance of Krt1 transcription in the context of central nervous system disorders.

Neutrophil cytosol factor 1 (also known as p47phox) is a protein encoded by the Ncf1 gene, and represents a subunit of neutrophil NADPH oxidase, a multi-component enzyme exploited by cells to produce superoxide anion. It is particularly studied in the field of vascular research, because of its role in vascular oxidative stress and hypertension [57,58]. In the nervous system, p47phox was found to be directly involved in

Fig. 4. qRT-PCR analysis of genes with altered transcription: genes involved in antioxidant defense (A), in ROS metabolism (B), and genes coding oxygen transporters (C); *p < 0.05.

neuronal oxidative stress and consequent cell death [59], thus an upregulation of Ncg1 could be seen as a negative effect following administration of NC to the cell culture (Fig. 4B). However, this phenomenon could be explained as a compensatory effect that induces cells to stabilize the levels of ROS following the strong scavenging action of NC, as already seen for Gpx.

Nos2 is a gene that encodes the enzyme nitric oxide synthase (NOS), responsible of the production of the reactive free radical nitric oxide, the up-regulation of which was found in endothelial cells following induction of ROS [60]. In the nervous system, it is directly correlated to inflammatory processes [61], and its over-expression is often followed by neuronal damages and degeneration [62]. Silencing of Nos was found to play a major role in the neuroprotection in models of Parkinson's disease by blocking activation of microglia [63]; thus, a down-regulation of Nos2 following NC administration (Fig. 4B) represents an optimal result in view of its exploitation in the treatment of neurodegenerative diseases. Similar effects were highlighted in a natural antioxidant, quercetin, that was able to exert a neuroprotective effect on PC12 cells through inhibition of the NOS/NO system [64].

Selenoprotein 1 (SEPP1, encoded by Sepp1) is a component of a class of selenoproteins owing strong antioxidant properties demonstrated, for example, in rat prostate cells [65] and in human endothelial cells [66]. In human astrocytes, administered SEPP1 was shown as protective against *tert*-butyl hydroperoxide (TBH)-induced oxidative damage; furthermore, down-regulation of Sepp1 through small interfering RNA

negatively affected astrocyte viability, making cells prone to TBH toxic effects, and thus confirming SEPP1 protective role against oxidative stress [67].

Interestingly, SEPP1 expression was found spatially correlated with amyloid- β and neurofibrillary tangles in Alzheimer's disease patients, with a possible involvement of Sepp1 in either disease progression or reaction to clear pathological alterations [68]. Similar spatial correlation was found between SEPP1 and Lewy bodies in Parkinson's disease patients, along with an increased selenoprotein expression with respect to cell density [69].

Although very preliminary, our finding of a decreased transcription of Sepp1 in PC12 cells upon NC administration (Fig. 4B) may be indicative of NC capability of modulating oxidative stress in those processes where Sepp1 is involved, and further studies may be addressed at assessing a possible stabilization of the selenoenzyme intracellular pool as a consequence of NC administration.

Sod3 encodes a member of the superoxide dismutase (SOD) protein family, namely extracellular superoxide dismutase (SOD3), an antioxidant enzyme that catalyzes the dismutation of two superoxide radicals into hydrogen peroxide and oxygen. There are several evidences that confirm as SOD3 can attenuate tissue damage and inflammation [70], and that can be neuroprotective against nitric oxide mediated stress to cerebellar neurons [71,72].

If a Sod3 up-regulation, as noticed in our treatments (Fig. 4B), can be positively considered, a down-regulation of this gene was expected parallel to the compensatory effect observed for the Gpx family genes. The unexpected evidence of Sod3 up-regulation could be explained in view of recent findings about dopamine effects on Sod3 transcription: as we have shown in our recent work, NC causes an increment of dopamine release from PC12 cells [22]. Takano and collaborators demonstrated as dopamine induces an up-regulation of Sod3 (extracellular Sod) in cultured rat cortical astrocytes, but has no effects in the transcription of Sod1 (cytosolic Sod) and Sod2 (mitochondrial Sod) isozyme genes [73]. These results are perfectly in line with our analysis that confirmed the up-regulation of Sod3 following NC treatment, but unaltered transcription of both Sod1 and Sod2.

Ucp3 encodes uncoupling protein 3, a member of a family of mitochondrial anion carrier proteins. Its expression is higher in skeletal muscle and, to a much lower extent, is present also in other tissues, such as brown adipose tissue and heart [74]. Despite the level of homology to Ucp1, the role of which has been established in mitochondrial proton gradient dissipation for non-shivering thermogenesis [75], the role of UCP3 protein is still debated and definitive evidences are still far from being achieved [76]. However, an increasing number of studies seems to point out UCP3 involvement into two different mechanisms: ROS and lipotoxicity mitigation. A detailed discussion of these two mechanisms and their functional implications is reported in a review by Bézaire *et al.* [77], while in the following a few studies concerning Ucp3 gene expression and Ucp3 putative connection to decreased ROS conditions are cited.

In rat gastrocnemius muscle, for example, Ucp3 was found to be strongly under-expressed by capsiate ingestion, implying higher ATP production and consuming processes and/or decreased muscle efficiency [78]. Most relevant to the purposes of the present study is that other members of the same family of genes, namely Ucp4 and Ucp5, were found increasingly expressed in neural cells with increasing MPP⁺-and dopamine induced toxicity [79,80]. Further studies are however necessary to better clarify the significance of the strong Ucp3 down-regulation upon administration of NC (Fig. 4B), especially in the context of central nervous system disorders.

The last two genes the transcription of which has been altered by the NC treatment are Cygb and Ngb, encoding two proteins involved in oxygen transportation: cytoglobin and neuroglobin, respectively (Fig. 4C), two recently discovered intracellular members of the vertebrate hemoglobin family. Cytoglobin is located in the cytoplasm of fibroblasts, chondroblasts, osteoblasts, and hepatic stellate cells, where it has been hypothesized to be involved in collagen biosynthesis [81]; in neurons, it has been hypothesized to bind oxygen and to have cell protective properties, besides being involved in ROS (NO)-signaling pathway [82].

Neuroglobin is predominantly expressed in neuronal cells and is supposed to protect them from hypoxic and ischemic insults by acting as a scavenger of ROS [83]: as an example, neuroglobin has been proven to decrease ROS over-production, lipid peroxidation, mitochondrial dysfunction and cell apoptosis/necrosis in PC12 cells treated with amyloid- β [84], and, in general, to act as a ROS scavenger in the same cell model [85].

While it is quite accepted that both cytoglobin and neuroglobin have neuroprotective effects, the mechanisms are still rather unclear. Cytoglobin expression is controlled by the HIF pathway under hypoxic conditions; instead, neuroglobin is probably regulated by the MAPK signal transduction pathway, or by hypoxia-inducible protein binding sites [86]. There are also *in vivo* evidences that point out different physiological roles of these two proteins, and even different sites and patterns of expression [87].

It is therefore clear that, at this point, it is very hard to give a satisfactory explanation for the different trends of transcription of Cygb (up-regulation at 20 and $50\,\mu\text{g/ml}$) and Ngb (down-regulation at $50\,\mu\text{g/ml}$) following NC administration, and deeper and more specific investigations are needed, in particular at level of protein expression. However, there are also other evidences, even in vivo [88], of contrasting behaviors of these two genes, suggesting different regulation mechanisms.

5. Conclusions

Despite several positive evidences in the literature about NC antioxidant efficiency (even *in vivo* [89]), the molecular mechanisms underlying these effects remain largely unexplored, and leave the debate about NC biosafety still open. There are some reports, in fact, claiming NC cytotoxicity [90], that however seems to be strictly related to the biological context and to the physical features of the investigated nanoparticles [91].

In order to gain a better insight at gene level on the consequences of NC administration, we performed a gene transcription investigation on PC12 cells treated with 20 and 50 µg/ml of NC for 72 h.

We highlighted, first of all, a general down-regulation of transcription of genes involved in the anti-oxidant defense of the cells (i.e., for example, Gpx2, Gpx5, Gpx6 and Gpx7). This could suggest a negative effect of NC on PC12 cells. However, in view of the previously demonstrated lack of toxicity, of ROS generation and, on the contrary, thanks to the proven anti-ROS activity of NC in PC12 [22], we suggest that cells deployed compensatory response to NC activity: NC acts as a strong exogenous ROS scavenger, and therefore the natural defense mechanisms are attenuated. Similar behavior was highlighted for other genes involved in ROS metabolism, like Ncf1 and Sepp1. An analogous trend was instead not found for Sod3, most probably because of a higher secretion of dopamine following NC administration [22]. The hypothesis of the role of NC as ROS scavenger, that acts as "substitute" of the natural cell defenses, is supported by the strong down-regulation of Lpo, a gene encoding for an enzyme active in the presence of H₂O₂, and by the down-regulation of Krt1 and Ccl5, the latter coding an important chemokine involved in inflammatory processes.

Finally, indirect neuroprotective effects are suggested by the upregulation of Hspa1 and by an extremely high down-regulation of Nos2, the silencing of which represents an interesting approach for the treatment of many neurodegenerative diseases.

Of course, this study represents just the starting point for a whole comprehension of NC effects at molecular levels: some results are still unclear (see for example, the opposite trend in transcription of Ngb

and Cygb), and, for sure, an investigation at protein level has to be carried out; moreover, effects of nanoparticles characterized by different sizes and production processes have to be assessed. Notwithstanding, in our opinion the collected findings further support the exploitation of NC in future treatments of neurodegenerative disease, even at pre-clinical level [92].

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.bbagen.2013.10.009.

References

- I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Pharmacological potential of cerium oxide nanoparticles, Nanoscale 3 (2011) 1411–1420.
- [2] A. Karakoti, S. Singh, J.M. Dowding, S. Seal, W.T. Self, Redox-active radical scavenging nanomaterials, Chem. Soc. Rev. 39 (2010) 4422–4432.
- [3] V. Esposito, E. Traversa, Design of electroceramics for solid oxide fuel cell applications: playing with ceria, J. Am. Ceram. Soc. 91 (2008) 1037–1051.
- [4] J.M. Dowding, T. Dosani, A. Kumar, S. Seal, W.T. Self, Cerium oxide nanoparticles scavenge nitric oxide radical ("NO), Chem. Commun. 18 (2012) 4896–4898.
- [5] S. Chen, Y. Hou, G. Cheng, C. Zhang, S. Wang, J. Zhang, Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress, Biol. Trace Elem. Res. 154 (2013) 156–166.
- [6] S. Chigurupati, M.R. Mughal, E. Okun, S. Das, A. Kumar, M. McCaffery, S. Seal, M.P. Mattson, Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing, Biomaterials 34 (2013) 2194–2201.
- [7] S. Giri, A. Karakoti, R.P. Graham, J.L. Maguire, C.M. Reilly, S. Seal, R. Rattan, V. Shridhar, Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer, PLoS One 8 (2013) e54578.
- [8] M.S. Wason, J. Colon, S. Das, S. Seal, J. Turkson, J. Zhao, C.H. Baker, Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production, Nanomedicine 9 (2013) 558–569.
- [9] M.S. Waso, J. Zhao, Cerium oxide nanoparticles: potential applications for cancer and other diseases, Am. J. Transl. Res. 5 (2013) 126–131.
- [10] A. Cimini, B. D'Angelo, S. Das, R. Gentile, E. Benedetti, V. Singh, A.M. Monaco, S. Santucci, S. Seal, Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways, Acta Biomater. 8 (2012) 2056–2067.
- [11] A.Y. Estevez, S. Pritchard, K. Harper, J.W. Aston, A. Lynch, J.J. Lucky, J.S. Ludington, P. Chatani, W.P. Mosenthal, J.C. Leiter, S. Andreescu, J.S. Erlichman, Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia, Free Radic. Biol. Med. 51 (2011) 1155–1163.
- [12] N. Bhargava, M. Das, A.J. Karakoti, S. Patil, J.F. Kang, M. Stancescu, M.S. Kindy, S. Seal, J.J. Hickman, Regeneration of adult mice motoneurons utilizing a defined system and anti-oxidant nanoparticles, J. Nanoneurosci. 1 (2009) 130–143.
- [13] I. Celardo, E. Traversa, L. Ghibelli, Cerium oxide nanoparticles: a promise for applications in therapy, J. Exp. Ther. Oncol. 9 (2011) 47–51.
- [14] S. Das, J.M. Dowding, K.E. Klump, J.F. McGinnis, W. Self, S. Seal, Cerium oxide nanoparticles: applications and prospects in nanomedicine, Nanomedicine UK 8 (2013) 1483–1508.
- [15] S. Das, S. Singh, J.M. Dowding, S. Oommen, A. Kumar, T.X. Sayle, S. Saraf, C.R. Patra, N.E. Vlahakis, D.C. Sayled, W.T. Self, S. Seal, The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments, Biomaterials 33 (2012) 7746–7755.
- [16] J. Chen, S. Patil, S. Seal, J.F. McGinnis, Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides, Nat. Nanotechnol. 1 (2006) 142–150.
- [17] X. Zhou, L.L. Wong, A.S. Karakoti, S. Seal, J.F. McGinnis, Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse, PLoS One 6 (2011) e16733.
- [18] L.L. Wong, S.M. Hirst, Q.N. Pye, C.M. Reilly, S. Seal, J.F. McGinnis, Catalytic nanoceria are preferentially retained in the rat retina and are not cytotoxic after intravitreal injection, PLoS One 8 (2013) e58431.
- [19] L. Kong, X. Cai, X. Zhou, L.L. Wong, A.S. Karakoti, S. Seal, J.F. McGinnis, Nanoceria extend photoreceptor cell lifespan in *tubby* mice by modulation of apoptosis/ survival signaling pathways, Neurobiol. Dis. 42 (2011) 514–523.
- [20] J. Colon, N. Hsieh, A. Ferguson, P. Kupelian, S. Seal, D.W. Jenkins, C.H. Baker, Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and up-regulation of superoxide dismutase 2, Nanomedicine 6 (2010) 698–705.
- [21] R.W. Tarnuzzer, J. Colon, S. Patil, S. Seal, Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage, Nano Lett. 5 (2005) 2573–2577.
- [22] G. Ciofani, G.G. Genchi, I. Liakos, V. Cappello, M. Gemmi, A. Athanassiou, B. Mazzolai, V. Mattoli, Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: proliferation, differentiation and dopamine secretion, Pharm. Res. 30 (2013) 2133–2145.
- [23] L.A. Greene, A.S. Tischler, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc. Natl. Acad. Sci. U. S. A. 73 (1976) 2424–2428.

- [24] M.S. Lord, M. Jung, W.Y. Teoh, C. Gunawan, J.A. Vassie, R. Amal, J.M. Whitelock, Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937, Biomaterials 33 (2012) 7915–7924.
- [25] E.G. Heckert, A.S. Karakoti, S. Seal, W.T. Self, The role of cerium redox state in the SOD mimetic activity of nanoceria, Biomaterials 29 (2008) 2705–2709.
- [26] X. Jiao, H. Song, H. Zhao, W. Bai, L. Zhang, Y. Lv, Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H₂O₂ and glucose detection, Anal. Methods 4 (2012) 3261–3267.
- [27] H.M. Schipper, Redox neurology: visions of an emerging subspecialty, Ann. N. Y. Acad. Sci. 1012 (2004) 342–355.
- [28] V. Jain, M.C. Langham, F.W. Wehrli, MRI estimation of global brain oxygen consumption rate. I. Cereb. Blood Flow Metab. 30 (2010) 1598–1607.
- [29] Y. Christen, Oxidative stress and Alzheimer disease, Am. J. Clin. Nutr. 71 (2000) 621–629.
- [30] P. Jenner, Oxidative stress in Parkinson's disease, Ann. Neurol. 53 (2003) 26-38.
- [31] I. Miyazaki, M. Asanuma, Approaches to prevent dopamine quinone-induced neurotoxicity. Neurochem. Res. 34 (2009) 698–706.
- [32] R. Dringen, J.M. Gutterer, J. Hirrlinger, Glutathione metabolism in brain. Metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species, Eur. J. Biochem. 267 (2000) 4912–4916.
- [33] E. Gharib, M. Gardaneh, S. Shojaei, Upregulation of glutathione peroxidase-1 expression and activity by glial cell line-derived neurotrophic factor promotes high-level protection of PC12 cells against 6-hydroxydopamine and hydrogen peroxide toxicities, Rejuvenation Res 16 (2013) 185–199.
- [34] H. Kohler, H. Jenzer, Interaction of lactoperoxidase with hydrogen peroxide. Formation of enzyme intermediates and generation of free radicals, Free Radic. Biol. Med. 6 (1989) 323–339.
- [35] D. Metodiewa, H. Brian, Peroxidase-promoted oxidation and peroxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine, Mol. Cell. Biochem. 112 (1992) 35–44.
- [36] S. Meeuwsen, C. Persoon-Deen, M. Bsibsi, R. Ravid, J.M. Van Noort, Cytokine, chemokine and growth factor gene profiling of cultured human astrocytes after exposure to proinflammatory stimuli, Glia 43 (2003) 243–253.
- [37] V. Sharma, M. Mishra, S. Ghosh, R. Tewari, A. Basu, P. Seth, E. Sen, Modulation of interleukin-1β mediated inflammatory response in human astrocytes by flavonoids: implications in neuroprotection, Brain Res. Bull. 73 (2007) 55–63.
- [38] D. Shah, A. Wanchu, A. Bhatnagar, Interaction between oxidative stress and chemokines: possible pathogenic role in systemic lupus erythematosus and rheumatoid arthritis, Immunobiology 216 (2011) 1010–1017.
- [39] V. Braunersreuther, C. Pellieux, G. Pelli, F. Burger, S. Steffens, C. Montessuit, C. Weber, A. Proudfoot, F. Mach, C. Arnaud, Chemokine CCL5/RANTES inhibition reduces myocardial reperfusion injury in atherosclerotic mice, J. Mol. Cell. Cardiol. 48 (2010) 789–798.
- [40] I.R. Phillips, E.A. Shephard, Flavin-containing monooxygenases: mutations, disease and drug response, Trends Pharmacol. Sci. 29 (2007) 294–301.
- [41] S. Gagliardi, P. Ogliari, A. Davin, M. Corato, E. Cova, K. Abel, J.R. Cashman, M. Ceroni, C. Cereda, Flavin-containing monooxygenase mRNA levels are up-regulated in ALS brain areas in SOD1-mutant mice, Neurotox. Res. 20 (2011) 150–158.
- [42] A. Gornicka, G. Morris-Stiff, S. Thapaliya, B.G. Papouchado, M. Berk, A.E. Feldstein, Transcriptional profile of genes involved in oxidative stress and antioxidant defense in a dietary murine model of steatohepatitis, Antioxid. Redox Signal. 15 (2011) 437-445.
- [43] M. Daugaard, M. Rohde, M. Jäättelä, The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions, FEBS Lett. 581 (2007) 3702–3710.
- [44] G. Turturici, G. Sconzo, F. Geraci, Hsp70 and its molecular role in nervous system diseases, Biochem. Res. Int. 2011 (2011) 618127.
- [45] S.K. Müller, A. Bender, C. Laub, T. Högen, F. Schlaudraff, B. Liss, T. Klopstock, M. Elstner, Lewy body pathology is associated with mitochondrial DNA damage in Parkinson's disease, Neurobiol. Aging 34 (2013) 2231–2233.
- [46] A.L. Fink, The aggregation and fibrillation of α -synuclein, Acc. Chem. Res. 39 (2006) 628–634.
- [47] J. Klucken, Y. Shin, E. Masliah, B.T. Hyman, P.J. McLean, Hsp70 reduces α -synuclein aggregation and toxicity, J. Biol. Chem. 279 (2004) 25497–25502.
- [48] C. Huang, H. Cheng, S. Hao, H. Zhou, X. Zhang, J. Gao, Q.H. Sun, H. Hu, C.C. Wang, Heat shock protein 70 inhibits α-synuclein fibril formation via interactions with diverse intermediates, J. Mol. Biol. 364 (2006) 323–336.
- [49] H.C. Huang, Z.F. Jiang, Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer's disease, J. Alzheimers Dis. 16 (2009) 15–27.
- [50] C.G. Evans, S. Wisen, J.E. Gestwicki, Heat shock proteins 70 and 90 inhibit early stages of amyloid β-(1–42) aggregation in vitro, J. Biol. Chem. 281 (2006) 33182–33191.
- [51] J.I. Kakimura, Y. Kitamura, K. Takata, M. Umeki, S. Suzuki, K. Shibagaki, T. Taniguchi, Y. Nomura, P.J. Gebicke-Haerter, M.A. Smith, G. Perry, S. Shimohama, Microglial activation and amyloid-β clearance induced by exogenous heat-shock proteins, FASEB I, 16 (2002) 601–603.
- [52] W.W. Franke, C. Grund, T. Achtstätter, Co-expression of cytokeratins and neurofilament proteins in a permanent cell line: cultured rat PC12 cells combine neuronal and epithelial features, J. Cell Biol. 103 (1986) 1933–1943.
- [53] N.N. Chuang, C.C. Huang, Interaction of integrin β1 with cytokeratin 1 in neuroblastoma NMB7 cells, Biochem. Soc. Trans. 35 (2007) 1292–1294.
- [54] O. Tal, R. Bergman, J. Alcalay, M. Indelman, E. Sprecher, Epidermolytic hyperkeratosis type PS-1 caused by aberrant splicing of KRT1, Clin. Exp. Dermatol. 30 (2005) 64–67.
- [55] F. Bardag-Gorce, B.A. French, L. Nan, H. Song, S.K. Nguyen, H. Yong, J. Dede, S.W. French, CYP2E1 induced by ethanol causes oxidative stress, proteasome inhibition

- and cytokeratin aggresome (Mallory body-like) formation, Exp. Mol. Pathol. 81 (2006) 191–201.
- [56] C.D. Collard, M.C. Montalto, W.R. Reenstra, J.A. Buras, G.L. Stahl, Endothelial oxidative stress activates the lectin complement pathway: role of cytokeratin 1, Am. J. Pathol. 159 (2001) 1045–1054.
- [57] U. Landmesser, H. Cai, S. Dikalov, L. McCann, J. Hwang, H. Jo, S.M. Holland, D.G. Harrison, Role of p47phox in vascular oxidative stress and hypertension caused by angiotensin II, Hypertension 40 (2002) 511–515.
- [58] G.R. Drummond, S. Selemidis, K.K. Griendling, C.G. Sobey, Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets, Nat. Rev. Drug Discov. 10 (2011) 453–471.
- [59] R.C. Reyes, A.M. Brennan, Y. Shen, Y. Baldwin, R.A. Swanson, Activation of neuronal NMDA receptors induces superoxide-mediated oxidative stress in neighboring neurons and astrocytes, J. Neurosci. 32 (2012) 12973–12978.
- [60] J. Zhen, H. Lu, X.Q. Wang, N.D. Vaziri, X.J. Zhou, Upregulation of endothelial and inducible nitric oxide synthase expression by reactive oxygen species, Am. J. Hypertens. 21 (2008) 28–34.
- [61] J.L. Madrigal, C. Dello Russo, V. Gavrilyuk, D.L. Feinstein, Effects of noradrenaline on neuronal NOS2 expression and viability, Antioxid. Redox Signal. 8 (2006) 885–892
- [62] S. Kalinin, P.E. Polak, J.L. Madrigal, V. Gavrilyuk, A. Sharp, N. Chauhan, M. Marien, F. Colpaert, D.L. Feinstein, Beta-amyloid-dependent expression of NOS2 in neurons: prevention by an alpha2-adrenergic antagonist, Antioxid. Redox Signal. 8 (2006) 873–883
- [63] M. Li, F.R. Dai, X.P. Du, Q.D. Yang, Y. Chen, Neuroprotection by silencing iNOS expression in a 6-OHDA model of Parkinson's disease, J. Mol. Neurosci. 48 (2012) 225-233.
- [64] Z.J. Zhang, L.C. Cheang, M.W. Wang, S.M. Lee, Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish, Int. J. Mol. Med. 27 (2011) 195–203.
- [65] O. Gonzalez-Moreno, N. Boque, M. Redrado, F. Milagro, J. Campion, T. Endermann, K. Takahashi, Y. Saito, R. Catena, L. Schomburg, A. Calvo, Selenoprotein-P is down-regulated in prostate cancer, which results in lack of protection against oxidative damage, Prostate 71 (2011) 824–834.
- [66] H. Steinbrenner, E. Bilgic, L. Alili, H. Sies, P. Brenneisen, Selenoprotein P protects human endothelial cells from oxidative stress-induced cell death by induction of glutathione peroxidase, Free Radic. Res. 40 (2006) 936–943.
- [67] H. Steinbrenner, L. Alili, E. Bilgic, H. Sies, P. Brenneisen, Involvement of selenoprotein P in protection of human astrocytes from oxidative damage, Free Radic. Biol. Med. 40 (2006) 1513–1523.
- [68] F.P. Bellinger, Q. Hea, M.T. Bellinger, Y. Lina, A.V. Ramana, L.R. White, M.J. Berrya, Association of selenoprotein P with Alzheimer's pathology in human cortex, J. Alzheimers Dis. 15 (2008) 465–472.
- [69] F.P. Bellinger, A.V. Ramana, R.H. Ruelia, M.T. Bellinger, A.S. Dewing, L.A. Seale, M.A. Andres, J.H. Uyehara-Lock, L.R. White, F. Webster Rosse, M.J. Berry, Changes in selenoprotein P in substantia nigra and putamen in Parkinson's disease, J. Alzheimers Dis. 2 (2012) 115–126.
- 70] E. Nozik-Grayck, H.B. Suliman, C.A. Piantadosi, Extracellular superoxide dismutase, Int. J. Biochem. Cell Biol. 37 (2005) 2466–2471.
- [71] K. Kemp, K. Hares, E. Mallam, K.J. Heesom, N. Scolding, A. Wilkins, Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival, J. Neurochem. 114 (2010) 1569–1580.
- [72] N. Zaghloul, M. Nasim, H. Patel, C. Codipilly, P. Marambaud, S. Dewey, W.K. Schiffer, M. Ahmed, Overexpression of extracellular superoxide dismutase has a protective role against hyperoxia-induced brain injury in neonatal mice, FEBS J. 279 (2012) 871–881
- [73] K. Takano, N. Tanaka, K. Kawabe, M. Moriyama, Y. Nakamura, Extracellular superoxide dismutase induced by dopamine in cultured astrocytes, Neurochem. Res. 38 (2013) 32_41
- [74] F. Bouillaud, Mitochondrial uncoupling proteins, Heart Metab. 48 (2010) 32–34.
- [75] B. Cannon, I.G. Shabalina, T.V. Kramarova, N. Petrovic, J. Nedergaard, Uncoupling proteins: a role in protection against reactive oxygen species—or not? Biochim. Biophys. Acta 1757 (2006) 449–458.
- [76] I.G. Shabalina, J. Nedergaard, Mitochondrial ('mild') uncoupling and ROS production: physiologically relevant or not? Biochem. Soc. Trans. 39 (2011) 1305–1309.
- [77] V. Bézaire, E.L. Seifert, M.E. Harper, Uncoupling protein-3: clues in an ongoing mitochondrial mystery, FASEB J. 21 (2007) 312–324.
- [78] B. Faraut, B. Giannesini, V. Matarazzo, T. Marqueste, C. Dalmasso, G. Rougon, P.J. Cozzone, D. Bendahan, Downregulation of uncoupling protein-3 in vivo is linked to changes in muscle mitochondrial energy metabolism as a result of capsiate administration, Am. J. Physiol. Endocrinol. Metab. 292 (2007) 1474–1482.
- [79] A.C. Chu, P.W. Ho, K.H. Kwok, J.W. Ho, K.H. Chan, H.F. Liu, M.H. Kung, D.B. Ramsden, S.L. Ho, Mitochondrial UCP4 attenuates MPP+- and dopamine-induced oxidative stress, mitochondrial depolarization, and ATP deficiency in neurons and is interlinked with UCP2 expression, Free Radic. Biol. Med. 46 (2009) 810–820.
- [80] K.H. Kwok, P.W. Ho, A.C. Chu, J.W. Ho, H.F. Liu, D.C. Yiu, K.H. Chan, M.H. Kung, D.B. Ramsden, S.L. Ho, Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity, Free Radic. Biol. Med. 49 (2010) 1023–1035.
- [81] M. Schmidt, F. Gerlach, A. Avivi, T. Laufs, S. Wystub, J.C. Simpson, E. Nevo, S. Saaler-Reinhardt, S. Reuss, T. Hankeln, T. Burmester, Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia, J. Biol. Chem. 279 (2004) 8063–8069.
- [82] Z. Raida, R. Reimets, A. Hay-Schmidt, C.A. Hundahl, Effect of permanent middle cerebral artery occlusion on cytoglobin expression in the mouse brain, Biochem. Biophys. Res. Commun. 424 (2012) 274–278.

- [83] P. Ascenzi, A. Bocedi, D. De Sanctis, A. Pesce, M. Bolognesi, M.C. Marden, S. Dewilde, L. Moens, T. Hankeln, T. Burmester, Neuroglobin and cytoglobin: two new entries in the hemoglobin superfamily, Biochem. Mol. Biol. Educ. 32 (2004) 305–313.
- [84] R.C. Li, F. Pouranfar, S.K. Lee, M.W. Morris, Y. Wang, D. Gozal, Neuroglobin protects PC12 cells against beta-amyloid-induced cell injury, Neurobiol. Aging 29 (2008) 1815–1822.
 [85] R.C. Li, M.W. Morris, S.K. Lee, F. Pouranfar, Y. Wang, D. Gozal, Neuroglobin protects
- PC12 cells against oxidative stress, Brain Res. 1190 (2008) 159–166.
- [86] E. Fordel, L. Thijs, W. Martinet, D. Schrijvers, L. Moens, S. Dewilde, Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions, Gene 398 (2007) 114–122.
- C.A. Hundahl, G.C. Allen, J. Hannibal, K. Kjaer, J.F. Rehfeld, S. Dewilde, J.R. Nyengaard, J. Kelsen, A. Hay-Schmidt, Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain, Brain Res. 1331 (2010) 58-73.
- [88] L. Beltran-Parrazal, D. Acuna, A.M. Ngan, E. Kim, A. Ngan, K. Kawakami, J. Edmond, I.A. Lopez, Neuroglobin, cytoglobin, and transcriptional profiling of hypoxia-related

- genes in the rat cerebellum after prenatal chronic very mild carbon monoxide exposure (25 ppm), Brain Res. 1330 (2010) 61–71.
- [89] S.M. Hirst, A. Karakoti, S. Singh, W. Self, R. Tyler, S. Seal, C.M. Reilly, Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice, Environ. Toxicol, 28 (2013) 107-118.
- [90] S. Hussain, F. Al-Nsour, A.B. Rice, J. Marshburn, B. Yingling, Z. Ji, J.I. Zink, N.J. Walker, S. Garantziotis, Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes, ACS Nano 6 (2012) 5820–5829.
- [91] A. Asati, S. Santra, C. Kaittanis, J.M. Perez, Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles, ACS Nano 4 (2010) 5321-5331
- [92] A.Y. Estevez, J.S. Erlichman, Cerium oxide nanoparticles for the treatment of neurological oxidative stress diseases, in: S. Andreescu, M. Hepel (Eds.), Oxidative Stress: Diagnostics, Prevention, and Therapy, ACS Symposium Series, vol. 1083, 2011, pp. 255-288.